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Abstract 

With the use of modulated plane waves, a new method 
for n-beam dynamical calculations has been estab- 
lished on the basis of a paper by Watanabe, Kikuchi, 
Hira t suka  & Y a m a g u c h i  [ Phys. Status Solidi A (1988), 
109, 119-126].  The  c o m p u t i n g  t ime is r educed  to 
abou t  one-s ix th  o f  wha t  it o r ig ina l ly  was and  a large 
r educ t ion  o f  m e m o r y  is achieved,  n -beam dynamica l  
ca lcu la t ions  o f  a l u m i n i u m ,  coppe r  and  gold  at several  
acce lera t ing  vol tages and  or ien ta t ions  were carr ied  
out  in a comple t e ly  para l le l  m a n n e r  by the present  
me thod ,  the  mult i -s l ice m e t h o d  and  Bethe 's  eigen- 
value m e t h o d  [Fu j iwara  (1959). J. Phys. Soc. Jpn 14, 

0108-7 673/90/020094-05 $03.00 

1513-1524]. The present method turned out to be 
competitive with respect to accuracy and speed in 
comparison with the latter two methods. The new 
method makes n-beam dynamical calculations of 
complex systems and defects possible. 

I. Introduction 

After  di rect- la t t ice  images  f rom a large uni t  cell 
(Allpress,  Sanders  & Wadsley ,  1969; Uyeda ,  
Kobayash i ,  Suito,  H a r a d a  & Watanabe ,  1972; 
Hash imo to ,  Endo ,  Tanj i ,  Ono  & W a t a n a b e ,  1977) 
were observed  by h igh- reso lu t ion  e lec t ron micros-  
copy,  the d e v e l o p m e n t  o f  e lec t ron mic roscopy  m a d e  
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it possible to observe the direct-lattice images of 
diamond (Izui, Furuno, Nishida, Ohtsu & Kuwabara, 
1987) and zinc-blende semiconductors (Yamashita, 
Ponce, Pirouz & Sinclair, 1982; Shiojiri, Kaito, 
Sekimoto & Nakamura, 1982; Watanabe, Hiratsuka, 
Kikuchi & Yamaguchi, 1987; Wright, Ng & Williams, 
1988). For zinc-blende semiconductors, in particular, 
it is worthwhile to identify the atomic species. Fur- 
thermore, the determination of complex structures 
such as oxide superconductors (Hiraga, Hirabayashi, 
Kikuchi & Sindo, 1988) has also been carried out. It 
is one of today's powerful techniques for examining 
crystal structure at an atomic scale. However, the 
investigation of crystal structure using high-resolution 
electron microscopy always demands image interpre- 
tation from n-beam dynamical calculations of elec- 
tron diffraction. 

Since Bethe (1928) developed the dynamical theory 
of electron diffraction, the problem of dynamical- 
scattering electrons has been tackled over the last 
thirty years by a variety of workers (Fujimoto, 1959; 
Cowley & Moodie, 1957; Hirsch, Howie, Nicholson, 
Pashley & Whelan, 1965; Howie & Basinski, 1968; 
Van Dyck, 1980). Correlations between these 
approaches have been discussed in detail (Jap & 
Glasser, 1978; Gratias & Portier, 1983). The most 
published theories of n-beam dynamical calculation 
may be roughly divided into two classes, those con- 
sidering the crystal as an infinite number of successive 
planes of infinitesimal thickness, and those consider- 
ing the crystal as an infinite three-dimensional 
medium. The former is called the multi-slice method 
and was set up by Cowley & Moodie (1957). A 
numerical method based on finite-slice approxima- 
tion was proposed by Goodman & Moodie (1974). 
Ishizuka & Uyeda (1977) further reduced the calcula- 
tion time to evaluate the electron transmission func- 
tion with a fast-Fourier-transform algorithm, so that 
it became possible to calculate defect images using 
the periodic continuation approximation (Fields & 
Cowley, 1978). While the multi-slice method is the 
most convenient and flexible theory, the selection of 
slice thickness for complex systems and of slice 
position has not been completely solved. In the 
second approach, which is called Bethe's eigenvalue 
method (Fujiwara, 1959), the Schr6dinger equation 
for an electron is solved under the appropriate 
boundary conditions by assuming three-dimensional 
periodicity. The problem involves the solution of a 
large secular equation. Unless the calculation is 
reduced using symmetry, it is difficult to evaluate 
lattice images of a complex system with the present 
state of computer technology. Furthermore, it is con- 
ceptually inadequate for defects because of its 
assumptions. There are disadvantages in either case. 

A rather different approach has recently been 
introduced by Watanabe, Kikuchi, Hiratsuka & 
Yamaguchi (1988) in order to obtain accurate and 

manageable n-beam dynamical calculations. This has 
been derived from the Schr~dinger equation on the 
assumption of two-dimensional periodicity. As shown 
by the results of completely parallel calculations using 
our method, the multi-slice method and Bethe's eigen- 
value method, our method is competitive with respect 
to accuracy for a (100) lattice image of f.c.c, metals 
at 100 kV. However, our method requires much com- 
puting time and enormous amounts of memory, and 
it is uncertain whether this method can be precisely 
applied to various orientations and higher accelerat- 
ing voltages than 100 kV. 

In this paper, we first resolve the problem of large 
computing time with modulated plane waves and the 
position-weighted method in which the calculation 
of scattering is neglected if the potential of the main 
reflection is less than a threshold energy. Further- 
more, we examine (100) and (110) n-beam dynamical 
calculations for aluminium, copper and gold at 100 
and 300 kV, and compare our results with the multi- 
slice and Bethe's eigenvalue methods. 

2. Theory 

2.1. Basic equations 

A detailed discussion of this new approach for 
n-beam dynamical calculations was given in the 
original paper (Watanabe et al., 1988), so that it is 
only briefly described below. A new formula has been 
derived from the Schr6dinger equation using two- 
dimensional periodicity for thin films. The wave func- 
tion and its coupled equations are given as 

0(x, z) = • uc,(z) exp i(kll+Gii)x/s 1/2, (1) 
GI[ 

[ ( d 2 / d g 2 )  + 2 E  - kll +G,  2_ 2 Vo]ua,(z) 

= Y~ 2 Vci_a,luc~(z), (2) 
Cl] 

where x =  (x, y)" Gii = the  projection of reciprocal- 
lattice vector G; s = the area of surface; and Vai_c, = 
the Fourier component of the crystal potential at z. 

The above coupling equations were derived on the 
basis of the same assumptions by different workers 
(T'ournarie, 1962; Hirsch, Howie, Nicholson, Pashely 
& Whelan, 1967; Howie & Basinski, 1967; Lynch & 
Moodie, 1972; Ichimiya, 1983). The equation is easily 
integrated, so that the coefficient u%(z) at the next 
step is given by 

ua,l(Az) = 2 cos (KAz)uc,(O) -- ua,.(--Az) 

+411--cos (KAz)] y, Vai_a,(O)uci(O)/K 2 
ci (3) 

2 
K = 2 E  -Ikll + Gill=-2 Vo, (4) 

where uc,(O) and uc,(-Az) are the values of the 
coefficients at the present and previous step, respec- 
tively. While the serious problems of numerical 
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(loo) 

100 kV 

300 kV 

Table 1. Maximum slice thickness and minimum beam number for convergence 

(110) 
AI Cu Au AI Cu 

l l x l l  l l x l l  l l x l l  13x13 13x13 
a/64 a/256 a/512 100 kV (a/2t/2)/64 (a/2t/2)128 

11x l l  l l x l l  l l x l l  13x13 13x13 
a/64 a/256 a/512 300 kV (a/21/2)/64 (a/2~/2)128 

mu 

13x13 
(a/21/2)/256 

13x13 
a/(21/2)256 

calculation seem to be perfectly bypassed by this 
integration, it is very time consuming. For example, 
in order to make the calculation converge, the slice 
thicknesses of f.c.c, samples must be a/1024 at 
100 kV, and a/2048 at 300 kV, respectively. In this 
way, our method still presents a formidable problem 
if a large number of Bragg reflections is considered. 

2.2. Modulated-plane-wave function 

The solution of (3) shows a propagating part with 
both oscillating and scattering components, and the 
solution of (4) is greater than the crystal potential 
Vci-c,(z) by several orders of magnitude. The time- 
consuming requirement for a very thin slice is mainly 
attributed to the first term of (3). To reduce the 
computing time, therefore, the uc,(z) is represented 
by a modulated plane wave 

u•,(z) = UGll exp (ikz). (5) 

Substituting (5) into (2), we find that the coefficient 
uc satisfies the set of equations 

[(d2/dz2) + 2 i k ( d / d z ) _ ( k  2 + kll-  Gi 12 + 2E)]uc,,,(z) 

= 2 Y. VG~_GllUci(Z). (6) 
ci 

Provided that k duc,/dz>>d2uG,/dz 2 the result is a 
first-order differential equation, 

d u c f f d z -  (2ik)-~(k2+ [kll + GIll 2 -  2E)uc, 

= (ik) -1 ~'. VGi_G, UGi. (7) 
Gf~ 

This equation removes the oscillating part of the 
propagating electron. Because the right-hand side in 
(7) is very small for high accelerating voltages, the 
integration step can be chosen to be very large com- 
pared with (3), and much time reduction can be 
expected. Only continuity at the entrance and exit 
surfaces is required since the differential equation is 
first order. This equation is also quite similar to the 
standard scattering equations (Hirsch et al., 1965; 
Howie & Basinski, 1967) except for the crystal poten- 
tial. In our treatment, the unit cell is divided into 
many slices, and the crystal potential is constructed 
at each slice position. On the other hand, the standard 
crystal potential is built up from the structure factor 
of the unit cell. The viewpoint of our treatment is 
quite different from the standard one in spite of its 
similar appearance. For RHEED, similar equations 
were derived by Maksym & Beeby (1981), and its 

Fourier transform to real space may also yield a 
real-space description (Van Dyck, 1980). 

2.3. Position-weighted method 

From the previous paper (Watanabe et al., 1988), 
it is clear that the amplitude of the diffracted wave 
changes in the vicinity of atomic planes, and remains 
constant between them. In other words, scattering 
occurs mainly around atomic planes and can be 
neglected between them. Therefore, in order to reduce 
the calculation time, we use a position-weighted 
method in which the scattering term in (7) is ignored 
when the potential for the main reflections is less than 
the threshold energy. In f.c.c, simulation, these ener- 
gies are selected on the basis of the 200 potential for 
(100) dynamical calculation, and of the 111 potential 
for (110), respectively. As a result, we can further 
reduce the computing time. 

3. Results 

The present method has been tested on n-beam 
dynamical calculations of aluminium, copper and 
gold, taking account of accelerating voltage and 
orientation. The crystal potentials were constructed 
from superposing free atoms (Doyle & Turner, 1968). 
In the calculations, the choice of beam number and 
slice thickness affects the accuracy and computing 
time for the n-beam dynamical calculation. We first 
discuss the above numerical parameters, and compare 
the present results with those from the multi-slice and 
Bethe's eigenvalue methods. 

3.1. Effects of beam number and slice thickness 

In order to estimate the upper limit of slice thick- 
ness and the lower limit of beam number, various 
calculations were carried out for each material. Con- 
verged conditions are determined by the sum of devi- 
ation functions in the same manner as by Ishizuka & 
Uyeda (1977). This function is given by 

H K  

E E 114'a(h, k)l-[4,B(h, k)[I 
12 k 

R ( H , K ) = H  K 
E E I I~A(h, k)l+ IO~(h, k)ll 
h k 

(8) 

The value of R(/-/, K)  is selected as R(4, 4) for (100), 
and R(6, 4) for (110), respectively. The resultant con- 
ditions in which R(H, K) is less than 0.05 are sum- 
marized in Table 1. From this, it is clear that the (100) 
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n-beam dynamical calculation demands fewer beams 
than the (110) one, and the beam number is indepen- 
dent of accelerating voltage. The slice thickness 
decreases with increasing atomic scattering power 
and is almost independent of accelerating voltage. 

3.2. (100) n-beam dynamical calculation 

The results of (100) n-beam dynamical calculation 
using the present method were compared with the 
multi-slice and Bethe's eigenvalue methods. For the 
simulation of the multi-slice method, slice thickness 
was a (lattice constant), and beam number was 32 x 
32. The slice thickness is the common condition for 
aluminium, copper and gold, and this beam number 
is large. An 11 x 11 beam number was adopted for 
Bethe. The present method used convergent-beam 
number and slice thickness as shown in Table 1. Figs. 
1 and 2 show the thickness series of 000 and 220 beam 
intensities for aluminium, copper and gold calculated 
with the three methods. At low atomic scattering 
power, the present method and the other two are 
superimposed independent of accelerating voltage. 
As the atomic scattering power is increased, the 
present method at 100 kV shows little difference from 
Bethe's method, while it yields large disagreement 
with the multi-slice results. A poor approximation for 
gold has already been suggested by Lynch (1971). 
However, the difference at 300 kV becomes appreci- 
able. The discrepancy with the multi-slice method is 
qualitatively explained in terms of a sudden perturbed 
approximation as discussed in the previous paper 
(Watanabe et al., 1988). According to this, the slice 
thickness must be chosen to be small enouzh for low 

accelerating voltage and high atomic scattering 
power. Therefore, in the case of gold, this approxima- 
tion becomes far from satisfactory at 100 kV. 

3.3. (110) n-beam dynamical calculation 

For the (110) n-beam dynamical calculation, 16x 
16 beam number was adopted for Bethe, and 32 x 32 
beam and a/21/2 slice thickness were used for the 

AI 

000 220 
1 0"3 

, i i , i t J ~ J i . . . . . . . . .  i 

0 2 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 
z/a z/a 

Cu 

000 220 
1 0"3. 

.../, 
- ~ ,  , , , , , ~  i r - . - ~  

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 
z/a z/a 

Au 

000 220 

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 
z/a z/a 

Fig. 2. Beam intensities of  the 000 and 220 reflections for (100) 
n-beam dynamical calculations at 300 kV: multi-slice (circles), 
Bethe (dashed line) and new method (solid line). 

0 0 0  220 
1 0 . 3  

o ' . . . . . . .  2'0 00 ½ 4 6 8 1 0  12 14 ll6 l r~20  

z/a z/a 
Cu 

000 220 

0.3 ] 
i i i i i i t i , 7 [ _ _ / ' ° " *  ~ 1 ~  . , ,_~ 

z/a z/a 
A u  

000 220 
I 0.3 

z 

6 8 I0 12 14 16 18 20 ; ½ 4 ; ; 1'0 1'2 14 116 1'8 20 

z/a z/a 

Fig. 1. Beam intensities of  the 000 and 220 reflections for (100) 
n-beam dynamical calculations at 100 kV: multi-slice (circles), 
Bethe (dashed line) and new method (solid line). 

AI 

000 111 

z 0 : i ~  

0 2 4 6 8 l0 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 

z/(a/~) z/(a/v~) 
Cu 

0 0 0  0.3 111 

, - , , , , , , , , , 

0 2 4 6 8 l0 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 

zl(alV~) zl(alv~) 
Au 

000 111 
I 0 . 3  

z o . . . . . . . . .  o - ,  ,T-.--r~.._r~ " ~  

0 2 4 6 8 10 12 14 16 18 20 ' 2 4 6 8 1'0 1'2 1'4 1'6 1 ' 8 ~ 0  

z/(a/v~) z/(a/~) 

Fig. 3. Beam intensities of the 000 and 111 reflections for (110) 
n-beam dynamical calculations at 100 kV: multi-slice (circles), 
Bethe (dashed line) and new method (solid line). 
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multi-slice method. These parameters made the calcu- 
lation of these methods converge. The parameters in 
Table 1 were used for the calculation by the present 
method. In Figs. 3 and 4, the intensities of the 000 
and 111 beams calculated by the three methods are 
plotted against thickness. The present method is in 
good agreement with Bethe's for all atomic scattering 
powers whether the accelerating voltage is 100 or 
300 kV. While the multi-slice method is identical with 
the present one for aluminium, the deviation increases 
with atomic scattering power. Compared with the 
(100) n-beam dynamical calculation, the deviation is 
not so large, and is not drastically diminished with 
increasing accelerating voltage. This small deviation 
may be caused by a smaller slice thickness than the 
(100) one. HoweVer, the effect of accelerating voltage 
cannot be interpreted simply by a sudden perturbed 
approximation, unlike (100). 

4. Concluding remarks 

An improved n-beam dynamical equation is derived 
using modulated plane waves on the basis of a two- 
dimensional periodic Schrrdinger equation. Reduc- 
tions of calculation time and required memory are 
achieved, and this method can be applied to various 
orientations and accelerating voltages. The slice 
thickness is so small that the calculation has little 
effect on slice position, unlike the multi-slice method. 
Thus, it may be expanded not only to complex systems 
but also to defects using the periodic continuation 
approximation. The Fourier transform to real space 

AI 
000 111 

0.3 

I I I I I I I I I I [ = T ' i - I i I t I I I I 

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 
zl(a/~) z/la/~) 

Cu 
000 111 l 0.3 

ol 
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 

zllalv~) z/ la l&) 
Au 

000 111 

°. ol ~ .° 

.~ ; ~ ,'o ~ ,', ,'~ ,'~ ~o o ~ ~ .  ~ ~  ,'o ~ ,:, ~'~ ,'~ ~o 
zl(a/~) z/(a/~) 

Fig. 4. Beam intensities of the 000 and 111 reflections for (110) 
n-beam dynamical calculations at 300 kV: multi-slice (circles), 
Bethe (dashed line) and new method (solid line). 

may correspond to the real-space method. In our 
treatment, two-dimensional periodicity was used in 
deriving an equation to avoid troublesome two- 
dimensional Laplacian calculations, whereas the real- 
space method extracts this problem using a three- 
point Laplacian approximation. From the results of 
practical numerical calculations, it becomes evident 
that maximum slice thickness is a function of atomic 
scattering power and minimum beam number 
depends on orientation. Furthermore, the present 
method turns out to be competitive with respect not 
only to accuracy but also to speed from the com- 
parison with the multi-slice and Bethe's eigenvalue 
methods. However, computing time is still about four 
times as long as for the multi-slice method, although 
such a calculation time is not a very serious problem 
with today's advanced computers. 

The authors thank the Computer Center of the 
University of Tokyo for the use of M680H and 
HITAC S-810 computers. 
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